Number theory and public key cryptography Cryptography, undergraduate course

Chapter 4- Number theory and Public key
Cryptography
Number theory

Divisibility
We say that a nonzero b divides a if a=mb for some m, where 4, b and # are integers.
That is, & divides « if there is no remainder on division. The 4|« notation is commonly

used to mean 4 divides a.
Example: The positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.

e Given any positive integer # and any nonnegative integer « , if we divide « by #,
we get an integer ¢ quotient and an integer remainder 7 that obey the following

relationship:
a=qn+r 0O=r<nyq=|ahn|

e We will use the notation ged(a, b) to mean the greatest common divisor of «
and b.
gcd(a, b) = max|k, suchthatk|a and k|b]

e Two integers are relatively prime if their only common positive integer factor is
1, 1.e ged(a,b)=1.
e Note that ged(b, 0) =gd(0, b) = b.

THE EUCLIDEAN ALGORITHM
It is a simple procedure for determining the greatest common divisor of two positive
integers.

Euclidean Algorithm

Comment: compute gcd(a,b), wherea >b >1.

r,=a

nL="h

fori==1 2, ... untilr ,=0
i =T modri

return (r,)
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Example: compute the GCD (1160718174, 316258250).

Dividend Divisor Quotient Remainder
a = 1160718174 b = 316258250 g = 3 ry = 211943424
b = 316258250 ry = 211943434 g, = 1 r, = 104314826
rp = 211943424 r; = 104314826 gz = 2 ry = 3313772
ry = 104314826 rs= 3313772 g4 = 31 ry = 1587894
ry = 3313772 ry = 1587894 gs = 2 rs = 137984
ry = 1587894 rs = 137984 qs = 11 rg = 70070
rs = 137984 T = 70070 g, = 1 r,= 67914
rg = 70070 ry = 67914 gs = 1 rg = 2136
ry = 67914 rg = 2156 qy = 31 rg = 1078
rg = 2156 ry = 1078 g = 2 g = 0
The Modulus

If @ is an integer and # is a positive integer, we define a mod n to be the remainder when
a is divided by 7. The integer 7 is called the modulus. Example: 11 mod 7 = 4;

e Two integers and are said to be congruent modulo n, if (a mod n)=(/ mod 7).

e This is written as @ = b (mod #), example: 73 = 4 (mod 23);

Modular Arithmetic

Define Z, the set as the set of nonnegative integers less than 7 :
Z,=1{0.1, ..., (n — 1)}
Modular arithmetic exhibits the following properties:
[(a mod n) + (b mod n)] modn = (a + b) mod n
[(amodn) — (bmodn)|modn = (a — b) mod n
[(@a mod n) x (bmodn)] modn = (a X b) mod n

Excample:
1Tmod8 =3:15mod8 =7
[(11 mod 8) + (15 mod 8)| mod 8 = 10mod 8 =2
(11 + 15) mod 8 = 26 mod 8§ = 2

[(11 mod 8) — (15 mod 8)] mod8 = —4mod 8 = 4
(11 = 15)mod 8 = —4mod 8 = 4

[(11 mod 8) X (15 mod 8)]mod 8 =21 mod8 =5
(11 X 15) mod 8 = 165 mod 8§ = 5

e Exponentiation is performed by repeated multiplication
To find 117 mod 13, we can proceed as follows:
112 = 121 = 4 (mod 13)
11% = (11%)? = 4> = 3 (mod 13)
117 =11 x 4 x 3 =132 = 2 (mod13)
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e Tables below provides an illustration of modular addition and multiplication

modulo 8.

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6

(a) Addition modulo 8

x 0 1 2 3 4 5 6 7 woo—w o w!
0 0 0 0 p 0 0 0 0 v 0| —
t ol 1t 23] 4] 5] 6] 7 L7t

2 0| 2 6 o | 2 1| s 2 6 | —
3 0 3 6 1 4 7 2 5 3 5 3

4 0 4 0 4 0 4 0 4 4 4 | —
5 0 5 2 7 4 1 6 3 5 3 5

6 0 6 4 2 0 6 4 2 6 2 | —
7 0 7 6 5 4 3 2 1 7 1 7

(b) Multiplication modulo 8 (c) Additive and multiplicative

inverses modulo 8

e Note that not all integers mod 8 have a multiplicative inverse.

e In general, an integer has a multiplicative inverse in Z,, if that integer is relatively
prime to 7. integers 1, 3, 5, and 7 have a multiplicative inverse in Zg; but 2, 4, and
6 do not.

e The set Z,is all elements in Zn that are relatively prime to n,

Zr, = {a € Zn|ged(a,n) =1}
Example: For n = 10 = 2 % 5 the following applies:
full remainder set R = Z,, = {0,1,2,3,4,5,6,7,8,9}

reduced remainder set R' = Z} = {1,3,7,9} — ¢(n) = 4.

The Extended Euclidean Algorithm

For given integers @ and &, the extended Euclidean algorithm not only calculate the
greatest common divisor but also two additional integers x and y that satisfy the
following equation.

ax + by = d = ged(a, b)

e Now let us show how to extend the Euclidean algorithm to determine (x;y,d)
given a and b.
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Extended Euclidean Algorithm

Calculate Which satisfies Calculate Which satisfies
roi=a xop =Ly =0 a=ax_y + by_q
ro=b Xp=0y=1 b = axy + by
rp =amodb a=qb+rn Xy =x_1— qxg = 1 r, = ax; + by,
qi = |alb| 1=V~ e = —q
r; = bmod ry b=gqy +r X3 =Xy — Xy r, = ax, + by,
g2 = | biry | Y2 = Yo — @)
ry = rymod rp =g +n X3 =X — 3% r; = axy + by,
g3 = |rir;] Y3 =M — 432

[ ] L ] L] L ]

[ ] L ] L] L ]

L ] L] L ] L]
r,=r,_omodr, Tn-2 = {nl'n—1 + In Xn = Xp—2 — a1 Iy = ax, + by,
qn = .r!i'—l"l.rﬂ—3| Yn = Yu—2 = dn¥n
Fpi1 = Th mod Ty = 0 Fn1 = QuiiTa +0 d = ng[ﬂ.b] =Ty
Gni1 = [Tn-1Ma—2] X=XV = Va

Excample: suppose that a=1759, b=550, solve ax+yb=gcd(a,b).

i r q; X; Vi
-1 1759 1 0
0 550 0 1
1 109 3 1 -3
2 5 5 -5 16
3 4 21 106 -339
4 1 1 -111 355
5 0 4

Result:d = 1. x = —111: v = 355

Computing Multiplicative Inverses
Given N and « € Z, with gcd(a, N) =1, then there exist integers X, Y with Xa+YN = 7.
We can use the following algorithm to find the multiplicative inverse:

ALGORITHM B.11

Computing modular inverses

Input: Modulus N; element a

Output: a™! (if it exists)

(d,X,Y) :=eGCD(a,N) /# note that Xa+ YN = ged(a, N) =/
if d # 1 return “a is not invertible modulo N”

else return [X mod N

PRIME NUMBERS

e Aninteger p is a prime number if and only if its only divisors are 1 and *p.
e Any integer a>1 can be factored in a unique way as

,

— iy
n—pl'ng-X XP{

Example:
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91 =7 x 13
3600 = 24 x 32 x 57
11011 = 7 x 112 x 13

e The quantity of prime numbers is infinite.

Proof according to Euclid (proof by contradiction)

Assumption: There is a finite number of primes.

Conclusion: ~ Then these can be listed p; < pa < p3 < -+ < p,, where n is the (finite)
number of prime numbers. p, is therefore the largest prime. Euclid now looks at the number
a=pi-p2---pn+ 1. This number cannot be a prime number because it is not included in
our list of primes. It must therefore be divisible by a prime, i.e. there is a natural number ¢
between 1 and n, such that p; divides the number a. Of course, p; also divides the product
a—1=pi p2---pn, because p; is a factor of o — 1. Since p; divides the numbers a and a — 1, it
also divides the difference of these numbers. Thus: p; divides a — (a — 1) = 1. p; must therefore
divide 1, which is impossible.

Contradiction: Our assumption was false.

¢ Below we list the first 2000 prime numbers.

2 10 211 3w 401 503 6l1 01 809 907 | 1009 | 1103 | 1201 | 1301 | 1400 | 1511 | 1601 | 1709 | 1801 | 1901
3 103 223 n 409 509 607 709 an 911 | 1013 | 1109 | 1213 | 1303 | 1423 | 1523 | 1607 | 1721 | 1811 | 1907
5 107 227 313 419 521 613 719 821 919 | 1019 | 1117 | 1217 | 1307 | 1427 | 1531 | 1609 | 1723 | 1823 | 1913
7 109 229 317 421 523 617 727 823 929 | 1021 | 1123 | 1223 | 1319 | 1429 | 1543 | 1613 | 1733 | 1831 | 1931
1 113 233 33 431 541 619 733 827 937 | 1031 | 1129 | 1229 | 1321 | 1433 | 1549 | 1619 | 1741 | 1847 | 1933
13 127 239 337 433 547 631 739 829 941 | 1033 | 1151 | 1231 | 1327 | 1439 | 1553 | 1621 | 1747 | 1861 | 1949
17 131 241 347 439 557 641 743 839 947 | 1039 | 1153 | 1237 | 1361 | 1447 | 1559 | 1627 [ 1753 | 1867 | 1951
19 137 251 349 443 563 643 751 853 953 | 1049 | 1163 | 1249 | 1367 | 1451 | 1567 | 1637 | 1759 | 1871 | 1973
23 139 257 353 449 569 647 57 857 967 | 1051 | 1171 | 1259 | 1373 | 1453 | 1571 | 1657 | 1777 | 1873 | 1979
29 149 263 359 457 571 633 6l 859 971 | 1061 | 1181 | 1277 | 1381 | 1459 | 1579 | 1663 | 1783 | 1877 | 1987
31 151 269 367 461 577 659 T69 863 977 | 1063 | 1187 | 1279 | 1399 | 1471 | 1583 | 1667 | 1787 | 1879 | 1993

37 157 271 373 463 587 661 73 877 983 | 1069 | 1193 | 1283 1481 | 1597 | 1669 | 1789 | 1889 | 1997
41 163 217 379 467 503 673 T87 881 991 | 1087 1289 1483 1693 1999
43 167 281 383 479 599 677 797 883 997 | 1091 1201 1487 1697

47 173 283 380 487 683 887 1003 1297 1489 1699

53 179 293 397 491 691 1007 1493

59 181 499 1499

61 191

67 193

n 197

73 199

79

83

89

97

Fermat’s Theorem
Fermat’s theorem states the following: If p is prime and is @ positive integer not divisible
by p, then

a’' = 1(mod r)

Exgmp/e.'
a=7, p= 19
?2 — _19 = ]1 (modlg)

74 =121 = 7(mod19)
7% = 49 = 11 (mod 19)
7'% = 121 = 7 (mod 19)
aP l=T8 =7 % TP =7x11 =1(mod19)
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Also, we have:

al = a(mod p)

Euler’s Totient Function

Euler’s totient function, written @(n) , and defined as the number of positive integers
less than 7 and relatively prime to 7.
O(N) = |Zy|, the order of the group Zy
- If N = pis prime. Then all elements in {1, ..., p -1}are relatively prime to p, and so
@(p)=p-1
- If N = pg, where p, gare distinct primes, then
G(N)=(p-D@-1

DETERMINE ¢(37) AND ¢(35).

Because 37 is prime, all of the positive integers from 1 through 36 are rela-
tively prime to 37. Thus $(37) = 36.

To determine (35), we list all of the positive integers less than 35 that are rela-
tively prime to it:

1,2,3.4,6,8,9,11,12,13, 16, 17, 18
19.22,23,24,26,27.29,31,32,33,34

There are 24 numbers on the list, so ¢(35) = 24,

e Below we list some of Euiler's totient functions

" din) " din) n bin)
1 1 11 10 21 12
2 1 12 4 22 10
3 2 13 12 23 22
4 2 14 6 24 8
3 4 15 8 25 20
6 2 16 8 26 12
7 6 17 16 27 18
3 4 18 6 28 12
9 ] 19 18 29 28
10 4 20 8 30 8

Euler’s Theorem
Euler’s theorem states that for every « and # that are relatively prime:
a®" = 1(modn)
Example:
a=3n=10; (10) =4 a*" =3* = 81 = 1(mod 10) = 1(mod n)
a=2n=11; $(11) = 10 a*™ = 2! = 1024 = 1(mod 11) = 1 (mod n)

DISCRETE LOGARITHMS
Discrete logarithms are fundamental to a number of public-key algorithms, including
Diffie-Hellman key exchange and the digital signature algorithm (DSA).
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e If zand 7 are relatively prime, then there is at least one integer 7 that satisfies:
a™ = 1 (mod n)

Where m=@(n), is called the order of .
e Table below shows all the powers of @, modulo 19 for all positive a<79.

2 5 5 -
a a (I3 H" as Ho HT (J',i Hq (II" H“ al' (I” HH (II:‘ Hm HIT fim

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 4 8 16 13 7 14 9 18 17 15 11 B 6 12 5 10 1
5 9 8 5 15 7 2 6 18 16 10 11 14 4 12 17 13 1
4 16 7 9 17 11 6 5 1 4 16 7 9 17 1 6 5 1
5 3 1 17 9 7 16 4 1 5 6 11 17 9 7 16 4 1
6 17 7 4 5 11 9 16 1 i 17 7 4 5 11 9 16 1
7 11 1 7 11 1 7 11 1 7 11 1 7 11 1 7 1m 1
8 7 18 11 12 1 8 7 18 11 12 1 8 7 1B’ 11 12 1
9 5 7 6 16 11 4 17 1 9 5 7 6 6 11 4 17 1
10 12 6 3 1 15 17 18 9 14 7 13 16 8 4 4 1

5
1 7 1 11 7 1 11 7 1 11
12 1 18 7 8 1 12 11 18 7
13 17 12 4 4 11 10 16 18 6
14 6 8 17 10 7 3

Important Notes
v Al sequences end in 1.
v" Some of the sequences are of length 18. In this case, it is said that the base
integer generates the set of nonzero integers modulo 19.
o FEach such integer is called a primitive root of the modulus 19.

e So, primitive root of 7 is the number # whose order is @(n).
e The importance of this notion is that if # is a primitive root of #, then its powers

-
a.a. .... ﬂ,-:br_:r]

are distinct and are all relatively prime to n.
e TFor the prime number 19, its primitive roots are 2, 3, 10, 13, 14, and 15.

Calculation of Discrete Logarithms
Consider the equation
y =g modp
e Given g x, and p, it is a straightforward matter to calculate y. At the worst, we
must perform repeated multiplications.

e However, given y,g, and p, it is, in general, very difficult to calculate x (take the
discrete logarithm).

PUBLIC-KEY CRYPTOGRAPHY AND RSA
e Public key is first developed by Diffie and Hellman in 1976.

e Public-key algorithms are based on mathematical functions rather than on
substitution and permutation.
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e public-key cryptography is asymmetric, involving the use of #wo separate keys, in
contrast to symmetric encryption, which uses only one key.
e The concept of public-key cryptography evolved from an attempt to attack two
of the most difficult problems associated with symmetric encryption.
o The first problem is that of &ey distribution
o The second problem is digital signatures.

Public-Key Cryptosystems
Asymmetric algorithms rely on one key for encryption and a different but related key for
decryption.
These algorithms have the following important characteristic.
1- Itis computationally infeasible to determine the decryption key given only
knowledge of the cryptographic algorithm and the encryption key.
2- Either of the two related keys can be used for encryption, with the other used for
decryption.

s We get secrecy (confidentiality) when encrypting by the receiver public key.

¢

Mike Alice
PU, | Alice’s public PR, Alice's private
key key
Transmitted ?’= i
ciphertext DIPR,. Y]
> —>
Y =E[PU,. X] —
Plaintext . . . . . Plaintext
input Encryption algorithm Decryption algorithm output
. (e.g.. RSA) \_#_(—Y—_\]i/‘
Bob (a) Encryption with public key Alice

% We get (anthentication) when encrypting by the sender private key.

Mike Bob

? ¢
PR, | Bob's private PUy | Bob's public
key key

Y Transmitted

! ciphertext g

R Y
= Y = E[PR,. X]
Plaintext Plaintext

X Encryption algorithm Decryption algorithm
1n]ml| (e.g. RSA) output

A

Bob (b) Encryption with private key Alice

% We can combine the (secrecy and authentication) as follows:
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Source A Destination B
—_—
Message X Encryption Y Encryption Z Decryption Y Decryption X Message
: —_— : I L !
\‘sour‘:e algorithm algorithm algorithm algorithm dest.
- . -

PU, ‘ PR,
Key pair |
source

PR, PU,

)
Key pair
source

. -~

Applications for Public-Key Cryptosystems

1- Encryption /decryption: The sender encrypts a message with the recipient’s
public key.

2- Digital signature: The sender “signs” a message with its private key. Signing is
achieved by a cryptographic algorithm applied to the message or to a small block
of data that is a function of the message.

3- Key exchange: Two sides cooperate to exchange a session key. Several different
approaches are possible, involving the private key(s) of one or both parties.

® A one-way function is one that maps a domain into a range such that every function
value has a unique inverse, with the condition that the calculation of the function
is easy, whereas the calculation of the inverse is infeasible:

Y =1X) easy
X = f(Y) infeasible

e We now turn to the definition of a #rap-door one-way function, which is easy to
calculate in one direction and infeasible to calculate in the other direction unless
certain additional information is known.

Y = fi(X) easy,if k and X are known
X = f(Y) easy,if k and Y are known
X = f,(_l(Y} infeasible, if ¥ is known but & is not known

THE RSA ALGORITHM

e Itis developed in 1977 by Ron Rivest, Adi Shamir, and Len Adleman at MIT and
first published in 1978.

e The RSA scheme is a block cipher in which the plaintext and ciphertext are
integers between 0 and 7 - 7 for some 7.

e A typical size for n is 1024 bits, or 309 decimal digits.
e That is, the block size must be less than or equal to /log2(n) + 1.
e Encryption and decryption are of the following form, for some plaintext block M
and ciphertext block C.
C = M‘modn
M= C'modn = (M")d mod n = M* mod n
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e Both sender and receiver must know the value of 7.

e The sender knows the value of ¢, and only the receiver knows the value of 4.

®  Thus, this is a public-key encryption algorithm with a public key of PU = {e, n}
and a private key of PR = {d, n}

e We need to find a relationship of the form

M mod n=M

e The preceding relationship holds if e and d are multiplicative inverses modulo @(n),
where @(n) is the Euler totient function.

e Recall that for p, g prime, @(pq) = (p - 1)(g - 1). The relationship between ¢ and 4
can be expressed as

ed mod ¢(n) =1

e This is equivalent to saying
ed = 1 mod ¢(n)

d = e ' mod ¢(n)

e So, the items of RSA scheme are:

p, g, two prime numbers (private, chosen)

n=pq (public, calculated)

e, with ged(¢p(n),e) =1:1 <e < ¢(n) (public, chosen)

d=e"' (mod ¢(n)) (private, calculated)
Excample:

L. Select two prime numbers, p =17 and g =11.

2. Calculate n=pg=17x11=187.

3. Calculate ¢(n)=(p —1)(g —1)=16x10=160.

4. Select e such that e is relatively prime to ¢b(n) = 160 and less than ¢(n); we
choose e=7.

5. Determine d such that de =1 (mod 160) and d < 160. The correct value is d =23,
because 23 x 7= 161 = (1 x 160) + 1; d can be calculated using the extended
Euclid’s algorithm (Chapter 4).

e The resulting keys are public key PU = {7, 187} and private key PR = {23, 187}.
e The example shows the use of these keys for a plaintext input of M= 88.
e For encryption, we need to calculate C = 88’ mod 187.

887 mod 187 =[(88* mod 187) x (882 mod 187)
% (88! mod 187)] mod 187

88! mod 187 = 88

882 mod 187 = 7744 mod 187 =77

88* mod 187 = 59,969,536 mod 187 = 132

887 mod 187 = (88 x 77 x 132) mod 187 = 894,432 mod 187 = 11

e TFor decryption, we calculate M = 11* mod 187:

Prof. Dr. Ayad Ibrahim & Prof. Dr. Ali A. Yassin ~ University of Basrah., Education
College for pure Sci., Computer Sci. Dept., 2023-2024



Number theory and public key cryptography Cryptography, undergraduate course

112 mod 187 = [(11! mod 187) x (112 mod 187) x (11* mod 187)

x (11% mod 187) x (11® mod 187)] mod 187

11" mod 187 =11

11% mod 187 = 121

11* mod 187 = 14,641 mod 187 =55

118 mod 187 = 214,358,881 mod 187 =33

112 mod 187 = (11 x 121 x 55 x 33 x 33) mod 187 = 79,720,245 mod 187 = 88

EXPONENTIATION IN MODULAR ARITHMETIC

Both encryption and decryption in RSA involve raising an integer to an integer

power, mod 7.

If the exponentiation is done over the integers and then reduced modulo 7, the

intermediate values would be huge.

Fortunately, as the preceding example shows, we can make use of a property of
modular arithmetic:

[(a mod n) X (b modn)]modn = (a X b) modn

To calculate the exponent operation in efficient way, we use the fast power
method.

Suppose we wish to calculate x'' mod # for some integers x and 7. Observe that
K= = (00 (5%) (). In this case, we compute x mod 7, x* mod 7, x* mod 7,
and x” mod 7 and then calculate [(x mod 7) X (x* mod #) X (x* mod #)] mod 2.
More generally, suppose we wish to find the value &’ with @ and # positive

integers. If we express & as a binary number bkb-1. . . b0, then we have

b= 22’
)

b;=(

a’mod n = {Ha[zi}}mod n= (H{a(zi)modu})modn
)

b;#0 b

ce—0; f«1
for i « k downto 0
do c« 2 X ¢
fe (f X £) mod n
if b; =1
then c«c + 1
fée (f X a) mod n

return f

Note: The integer b is expressed as a
binary number bpby _q ... by

E

Algorithm for Computing ¢” mod n
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Result of the Fast Modular Exponentiation Algorithm for ¢® mod n, where a =17,

b =560= 1000110000, and n =561

i 9 8 7 6 5 4 3 2 1 0
b; 1 0 0 0 1 1 0 0 0 0
¢ 1 2 4 8 17 35 70 140 280 560
f 7 49 157 526 160 241 298 166 67 1

To speed up the operation of the RSA algorithm using the public key, a specific
choice of ¢ s usually made. The most common choice is 65537 (2'° + 1); two
other popular choices are 3 and 17.
o Each of these choices has only two 1 bits, so the number of
multiplications required to perform exponentiation is minimized.

The Security of RSA
Four possible approaches to attacking the RSA algorithm are

Brute force: This involves trying all possible private keys.

Mathematical attacks: There are several approaches, all equivalent in effort to
factoring the product of two primes.

Timing attacks: These depend on the running time of the decryption algorithm.
Chosen ciphertext attacks: This type of attack exploits properties of the RSA
algorithm.

THE FACTORING PROBLEM
We can identify three approaches to attacking RSA mathematically.

Factor n into its two prime factors. This enables calculation of ¢p(n) = (p — 1) x
(¢ —1). which in turn enables determination of d = el (mod ¢(n)).

Determine ¢(n) directly, without first determining p and ¢. Again, this enables
determination of d = ¢! (mod ¢(n)).

Determine d directly, without first determining ¢b(n).

Most discussions of the cryptanalysis of RSA have focused on the task of
factoring 7 into its two prime factors.

For a large # with large prime factors, factoring is a hard problem.

Currently we know that RSA is at most as difficult as factorization, but we cannot
prove that its exactly as difficult as factorization. Or in other words: We cannot
prove, that if RSA (the cryptosystem) is broken, that then factorization (the hard
mathematical problem) can be solved.

The Rabin cryptosystem was the first cryptosystem which could be proven to be
computationally equivalent to a hard problem.
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Number of Approximate Date
Decimal Digits | Number of Bits Achieved MIPS-Years Algorithm

100 332 April 1991 7 Quadratic sieve

110 363 April 1992 75 Quadratic sieve

120 398 June 1993 830 Quadratic sieve

129 428 April 1994 5000 Quadratic sieve

130 431 April 1996 1000 Generalized number field sieve
140 465 February 1999 2000 Generalized number field sieve
155 512 August 1999 8000 Generalized number field sieve
160 530 April 2003 — Lattice sieve

174 376 December 2003 — Lattice sieve

200 663 May 2005 — Lattice sieve

TIMING ATTACKS

This attack can determine a private key by keeping track of how long a computer takes to
decipher messages.

Although the timing attack is a serious threat, there are simple countermeasures
that can be used, including the following.

Constant exponentiation time: Ensure that all exponentiations take the same
amount of time before returning a result.

Random delay: Better performance could be achieved by adding a random delay
to the exponentiation algorithm to confuse the timing attack.

Blinding: Multiply the ciphertext by a random number before performing
exponentiation. This process prevents the attacker from knowing what ciphertext
bits are being processed inside the computer and therefore prevents the bit-by-bit
analysis essential to the timing attack.

RSA Data Security incorporates a blinding feature into some of its products.
The private-key operation M = " mod # is implemented as follows.

Generate a secret random number r between 0 and n — 1.

Compute C" = C(¥) mod n, where e is the public exponent.

Compute M’ = (C') mod n with the ordinary RSA implementation.

Compute M = M'r " mod n. In this equation, 7! is the multiplicative inverse of
r mod 7n; see Chapter 4 for a discussion of this concept. It can be demonstrated
that this is the correct result by observing that #* mod n = r mod n.

CHOSEN CIPHERTEXT ATTACK

The basic RSA algorithm is vulnerable to a chosen ciphertext attack (CCA).
CCA is defined as an attack in which the adversary chooses a number of
ciphertexts and is then given the corresponding plaintexts, decrypted with the
target’s private key.

A simple example of a CCA against RSA takes advantage of the following
homomorphism property of RSA:

E(PU, My) x E(PU, My) = E(PU, [My x M5])

We can decrypt C = M mod 7 using a CCA as follows.
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Compute X = (C x 2°) mod n.
Submit X as a chosen ciphertext and receive back Y= X% mod n.
But now note that
X = (Cmodn) X (2°mod n)
= (M*mod n) X (2°mod n)
= (2M)*mod n
Therefore, Y = (2M) mod 7.

e To overcome this simple attack, practical RSA-based cryptosystems randomly pad
the plaintext prior to encryption.
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